Source code for downhill.base

# -*- coding: utf-8 -*-

'''This module defines a base class for optimization techniques.'''

import click
import collections
import numpy as np
import theano
import theano.tensor as TT
import warnings

from . import util


[docs]def build(algo, loss, params=None, inputs=None, updates=(), monitors=(), monitor_gradients=False): '''Construct an optimizer by name. Parameters ---------- algo : str The name of the optimization algorithm to build. loss : Theano expression Loss function to minimize. This must be a scalar-valued expression. params : list of Theano variables, optional Symbolic variables to adjust to minimize the loss. If not given, these will be computed automatically by walking the computation graph. inputs : list of Theano variables, optional Symbolic variables required to compute the loss. If not given, these will be computed automatically by walking the computation graph. updates : list of update pairs, optional A list of pairs providing updates for the internal of the loss computation. Normally this is empty, but it can be provided if the loss, for example, requires an update to an internal random number generator. monitors : dict or sequence of (str, Theano expression) tuples, optional Additional values to monitor during optimization. These must be provided as either a sequence of (name, expression) tuples, or as a dictionary mapping string names to Theano expressions. monitor_gradients : bool, optional If True, add monitors to log the norms of the parameter gradients during optimization. Defaults to False. Returns ------- optimizer : :class:`Optimizer` An optimizer instance. ''' return Optimizer.build(algo, loss, params, inputs, updates=updates, monitors=monitors, monitor_gradients=monitor_gradients)
[docs]class Optimizer(util.Registrar(str('Base'), (), {})): '''An optimizer computes gradient updates to iteratively optimize a loss. Attributes ---------- patience : int, optional Number of validation "failures" that we are willing to tolerate before stopping the optimization process. A validation failure happens whenever the loss on the validation dataset decreases by less than ``min_improvement`` (relative) over the previous best validation loss. Defaults to 5. validate_every : int, optional Evaluate the loss on the validation dataset after making this many passes over the training data. Defaults to 10. min_improvement : float, optional Insist that the validation loss must improve by this relative amount before considering that the optimization has made progress. The optimization process halts when ``patience`` validations have failed to make this relative improvement. Defaults to 0; set to a larger value (e.g., 0.01 for 1% improvement) to halt the optimization process sooner. max_gradient_norm : float, optional Rescale each parameter's gradient so that it has at most this L2 norm. Set to 0 (the default) to disable norm rescaling. If ``max_gradient_elem`` is also specified, then this has no effect. max_gradient_elem : float, optional Perform elementwise clipping on the magnitude of gradient values. Set to 0 (the default) to disable. If elementwise clipping is enabled, norm rescaling (via ``max_gradient_norm``) will have no effect. Deprecated synonyms of this parameter are "max_gradient_clip" and "gradient_clip". learning_rate : float, optional Many SGD-based optimization algorithms require a learning rate hyperparameter that scales the gradient step. Defaults to 1e-4. momentum : float, optional Apply momentum to the parameter updates for this optimizer, with the given strength. Typically this value ranges from 0 (no momentum) to :math:`1 - \epsilon` (large momentum). Defaults to 0. nesterov : bool, optional If True, and ``momentum`` is nonzero, apply Nesterov-style momentum to parameter updates for this optimizer. If False, and ``momentum`` is nonzero, "regular" momentum is applied. Has no effect if ``momentum`` is zero. See :class:`NAG <downhill.NAG>` for a description of Nesterov momentum. Parameters ---------- loss : Theano expression Loss function to minimize. This must be a scalar-valued expression. params : list of Theano variables, optional Symbolic variables to adjust to minimize the loss. If not given, these will be computed automatically by walking the computation graph. inputs : list of Theano variables, optional Symbolic variables required to compute the loss. If not given, these will be computed automatically by walking the computation graph. updates : list of update pairs, optional A list of pairs providing updates for the internals of the loss computation. Normally this is empty, but it can be provided if the loss, for example, requires an update to an internal random number generator. monitors : sequence of (str, Theano expression) tuples, optional Additional values to monitor during optimization. These must be provided as a sequence of (name, expression) tuples. monitor_gradients : bool, optional If True, add monitors to log the norms of the parameter gradients during optimization. Defaults to False. '''
[docs] def __init__(self, loss, params=None, inputs=None, updates=(), monitors=(), monitor_gradients=False): inputs_, params_ = util.find_inputs_and_params(loss) self._loss = loss self._params = params or params_ self._inputs = inputs or inputs_ self._updates = updates self._shapes = [p.get_value(borrow=True).shape for p in self._params] self._counts = [np.prod(s) for s in self._shapes] self._starts = np.cumsum([0] + self._counts)[:-1] self._dtype = self._params[0].get_value().dtype self._curr_iter = 0 self._best_iter = 0 self._best_loss = 1e100 self._best_params = [p.get_value().copy() for p in self._params] self._monitor_exprs = [self._loss] self._monitor_names = ['loss'] for name, monitor in monitors: self._monitor_names.append(name) self._monitor_exprs.append(monitor) if monitor_gradients: unnamed = 0 for p, g in zip(self._params, TT.grad(self._loss, self._params)): name = p.name if not name: name = 'unnamed{}'.format(unnamed) unnamed += 1 util.log('"{}" unnamed, will be "{}" internally'.format(p, name)) self._monitor_names.append('grad({})'.format(name)) self._monitor_exprs.append((g * g).sum())
def _compile(self, **kwargs): '''Compile the Theano functions for evaluating and updating our model. ''' util.log('compiling evaluation function') self.f_eval = theano.function(self._inputs, self._monitor_exprs, updates=self._updates, name='evaluation') label = self.__class__.__name__ util.log('compiling {} optimizer'.format(click.style(label, fg='red'))) updates = list(self._updates) + list(self.get_updates(**kwargs)) self.f_step = theano.function(self._inputs, self._monitor_exprs, updates=updates, name=label)
[docs] def get_updates(self, **kwargs): '''Get parameter update expressions for performing optimization. Keyword arguments can be applied here to set any of the global optimizer attributes. Yields ------ updates : (parameter, expression) tuples A sequence of parameter updates to be applied during optimization. ''' self._prepare(**kwargs) for param, grad in self._differentiate(): for var, update in self._get_updates_for(param, grad): # For auxiliary variables, updates are meant to replace the # existing variable value. if var != param: yield var, update continue # If momentum is disabled, just apply the parameter delta. if self.momentum == 0: yield var, param - update continue # Momentum is enabled, so we keep track of velocity here. vel_tm1 = util.shared_like(param, 'vel') vel_t = util.as_float(self.momentum) * vel_tm1 - update if self.nesterov: # see http://arxiv.org/pdf/1212.0901v2.pdf (eq 7) and # https://github.com/lisa-lab/pylearn2/pull/136#issuecomment-10381617 mom_sqr = util.as_float(self.momentum ** 2) mom_inc = util.as_float(1 + self.momentum) vel_t = mom_sqr * vel_tm1 - mom_inc * update yield vel_tm1, vel_t yield param, param + vel_t
def _get_updates_for(self, param, grad): '''Generate some update pairs for the given model parameter. Yields ------ updates : (parameter, expression) tuples A sequence of parameter updates to be applied during optimization. ''' raise NotImplementedError def _differentiate(self, params=None): '''Return a sequence of gradients for our parameters. If this optimizer has been configured with a gradient norm limit, or with elementwise gradient clipping, this method applies the appropriate rescaling and clipping operations before returning the gradient. Parameters ---------- params : list of Theano variables, optional Return the gradient with respect to these parameters. Defaults to all parameters that the optimizer knows about. Yields ------ pairs : (param, grad) tuples Generates a sequence of tuples representing each of the parameters requested and the corresponding Theano gradient expressions. ''' if params is None: params = self._params for param, grad in zip(params, TT.grad(self._loss, params)): if self.max_gradient_elem > 0: limit = util.as_float(self.max_gradient_elem) yield param, TT.clip(grad, -limit, limit) elif self.max_gradient_norm > 0: norm = TT.sqrt((grad * grad).sum()) limit = util.as_float(self.max_gradient_norm) yield param, grad * TT.minimum(1, limit / norm) else: yield param, grad
[docs] def set_params(self, targets=None): '''Set the values of the parameters to the given target values. Parameters ---------- targets : sequence of ndarray, optional Arrays for setting the parameters of our model. If this is not provided, the current best parameters for this optimizer will be used. ''' if not isinstance(targets, (list, tuple)): targets = self._best_params for param, target in zip(self._params, targets): param.set_value(target)
def _log(self, monitors, iteration, label='', suffix=''): '''Log the state of the optimizer on the console. Parameters ---------- monitors : OrderedDict A dictionary of monitor names mapped to values. These names and values are what is being logged. iteration : int Optimization iteration that we are logging. label : str, optional A label for the name of the optimizer creating the log line. Defaults to the name of the current class. suffix : str, optional A suffix to add to the end of the log line, if any. ''' label = label or self.__class__.__name__ fields = (('{}={:.6f}').format(k, v) for k, v in monitors.items()) util.log('{} {} {}{}'.format(label, iteration, ' '.join(fields), suffix))
[docs] def evaluate(self, dataset): '''Evaluate the current model parameters on a dataset. Parameters ---------- dataset : :class:`Dataset <downhill.dataset.Dataset>` A set of data to use for evaluating the model. Returns ------- monitors : OrderedDict A dictionary mapping monitor names to values. Monitors are quantities of interest during optimization---for example, loss function, accuracy, or whatever the optimization task requires. ''' if dataset is None: values = [self.f_eval()] else: values = [self.f_eval(*x) for x in dataset] monitors = zip(self._monitor_names, np.mean(values, axis=0)) return collections.OrderedDict(monitors)
def _test_patience(self, monitors): '''Test whether our patience with optimization has elapsed. Parameters ---------- monitors : dict A dictionary mapping monitor names to values. The 'loss' key from this dictionary will be used to evaluate optimization progress. Returns ------- elapsed : bool True iff our patience has elapsed and the model is no longer improving. ''' self._curr_iter += 1 marker = '' loss = monitors['loss'] if self._best_loss - loss > self._best_loss * self.min_improvement: self._best_loss = loss self._best_iter = self._curr_iter self._best_params = [p.get_value().copy() for p in self._params] marker = ' *' self._log(monitors, self._curr_iter - 1, 'validation', marker) return self._curr_iter - self._best_iter > self.patience def _prepare(self, **kwargs): '''Set up properties for optimization. This method can be overridden by base classes to provide parameters that are specific to a particular optimization technique (e.g., setting up a learning rate value). ''' self.learning_rate = util.as_float(kwargs.pop('learning_rate', 1e-4)) self.momentum = kwargs.pop('momentum', 0) self.nesterov = kwargs.pop('nesterov', False) self.patience = kwargs.get('patience', 5) self.validate_every = kwargs.pop('validate_every', 10) self.min_improvement = kwargs.pop('min_improvement', 0) self.max_gradient_norm = kwargs.pop('max_gradient_norm', 0) self.max_gradient_elem = kwargs.pop('max_gradient_elem', 0) util.log_param('patience', self.patience) util.log_param('validate_every', self.validate_every) util.log_param('min_improvement', self.min_improvement) util.log_param('max_gradient_norm', self.max_gradient_norm) util.log_param('max_gradient_elem', self.max_gradient_elem) util.log_param('learning_rate', self.learning_rate) util.log_param('momentum', self.momentum) util.log_param('nesterov', self.nesterov)
[docs] def iterate(self, train=None, valid=None, max_updates=None, **kwargs): r'''Optimize a loss iteratively using a training and validation dataset. This method yields a series of monitor values to the caller. After every optimization epoch, a pair of monitor dictionaries is generated: one evaluated on the training dataset during the epoch, and another evaluated on the validation dataset at the most recent validation epoch. The validation monitors might not be updated during every optimization iteration; in this case, the most recent validation monitors will be yielded along with the training monitors. Additional keyword arguments supplied here will set the global optimizer attributes. Parameters ---------- train : sequence or :class:`Dataset <downhill.dataset.Dataset>` A set of training data for computing updates to model parameters. valid : sequence or :class:`Dataset <downhill.dataset.Dataset>` A set of validation data for computing monitor values and determining when the loss has stopped improving. Defaults to the training data. max_updates : int, optional If specified, halt optimization after this many gradient updates have been processed. If not provided, uses early stopping to decide when to halt. Yields ------ train_monitors : dict A dictionary mapping monitor names to values, evaluated on the training dataset. valid_monitors : dict A dictionary containing monitor values evaluated on the validation dataset. ''' self._compile(**kwargs) if valid is None: valid = train iteration = 0 training = validation = None while max_updates is None or iteration < max_updates: if not iteration % self.validate_every: try: validation = self.evaluate(valid) except KeyboardInterrupt: util.log('interrupted!') break if self._test_patience(validation): util.log('patience elapsed!') break try: training = self._step(train) except KeyboardInterrupt: util.log('interrupted!') break iteration += 1 self._log(training, iteration) yield training, validation self.set_params('best')
[docs] def minimize(self, *args, **kwargs): '''Optimize our loss exhaustively. This method is a thin wrapper over the :func:`iterate` method. It simply exhausts the iterative optimization process and returns the final monitor values. Returns ------- train_monitors : dict A dictionary mapping monitor names to values, evaluated on the training dataset. valid_monitors : dict A dictionary containing monitor values evaluated on the validation dataset. ''' monitors = None for monitors in self.iterate(*args, **kwargs): pass return monitors
def _step(self, dataset): '''Advance the state of the optimizer by one step. Parameters ---------- dataset : :class:`Dataset <downhill.dataset.Dataset>` A dataset for optimizing the model. Returns ------- train_monitors : dict A dictionary mapping monitor names to values. ''' if dataset is None: values = [self.f_step()] else: values = [self.f_step(*x) for x in dataset] return collections.OrderedDict( zip(self._monitor_names, np.mean(values, axis=0)))